If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=28
We move all terms to the left:
8x^2-(28)=0
a = 8; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·8·(-28)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*8}=\frac{0-8\sqrt{14}}{16} =-\frac{8\sqrt{14}}{16} =-\frac{\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*8}=\frac{0+8\sqrt{14}}{16} =\frac{8\sqrt{14}}{16} =\frac{\sqrt{14}}{2} $
| 3x-6x=90 | | 4x-5=5x+32 | | 9j-4j+3=-32 | | 9(4h+4)=12(3h+2) | | 29+0.15p=53 | | 18r^2+33r-14=0 | | Ax7=1057 | | 3/3x=-9 | | 2x+6.516-0.7-8=9 | | 50=2x+4.905x^2 | | 0.75+0.50x+2=0 | | (3x-10)=(7x+90) | | 3n+11=2n+4 | | 9(h-6)=4(h+9) | | -6(t+4)=18 | | 4e+6=-8 | | 5y-6=17y | | Y=3.6x-2.8 | | -2(x-1)+3x=3 | | s+22+18=133 | | 5(3x+1)=10(2x-1) | | s-22-18=133 | | (2x-8)+3x=32 | | .(2x-8)+3x=32 | | -5(z-6)+5z=36-z | | 2(x-7/5)=3/5x-21/25 | | 0=4.9t^2+23.2849t+5 | | 6x+2=-9(x-4) | | 40x+135x=36x | | 5x-2*(2x+1)=3*(x-1) | | -8n+40=-4(3+8n)+4 | | 12y-8y=0 |